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 Protein-Protein Interactions play a vital role in most of the biological activities. The study 

of functional residues (FRs) is necessary for understanding protein functions and biological 

processes. To understand the FRs, one of the widely used methods is the amino acid network 

(AAN). This network representation of protein provides a systems approach to topological analysis 

based on the three-dimensional structure of the complex, irrespective of secondary structure and 

folding types and provide vital information about the FRs. The current AAN models use two 

strategies for network construction, node and edge. Fundamentally each amino acid has its own 

importance and hence, it is necessary to treat each and every node as different. Here we compare 

two such AAN models, where different features based on protein complex are used and the best 

model to predict FRs is found out using machine learning. We used a set of 101 protein-protein 

complexes for which the interacting pairs are heterodimers. We assessed the performance of the 

model and conclude which parameters are crucial to discern high and low binding affinity 

complexes.    

 

 

   Keywords: Protein-Protein Interactions (PPIs), Functional residues (FRs), Machine-learning 

(ML), Amino acid network (AAN), Protein dynamics  
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1. Graph Theory: 

In mathematics, graph theory is the study of graphs which are mathematical structures in 

order to build a pairwise relation between multiple objects. The graph generated is made-up of 

nodes (vertices or points) and edge (links or lines). The first paper related to this theory can be 

found in 1736 where the knight problem was tried to be solved (1). Knights tour is a sequence of 

moves of a knight on a chessboard such that the knight visits each square only once and if one of 

the squares is traced again, the tour ends (2). Leonhard Euler along with Vandermonde worked on 

this problem and this marked the beginning of the branch of mathematics known as topology.  

The term “graph” was first introduced by Sylvester in a paper published in 1878, where he 

drew the analogy between molecular diagrams (3). In 1936, the first book relating to graph theory 

was published by Dénes Kőnig (4), and later in 1969, another book by Frank Harary was published 

which was "considered the world over to be the definitive textbook on the subject" and this led to 

mathematicians, engineers, scientists to interact with each other in terms of numbers (5).  There 

were many autonomous developments of topology from 1860 to 1930 which helped the theory to 

blossom. Modern algebra also helped in the development of graph theory, wherein Gustav 

Kirchhoff in 1845 published his Kirchhoff’s circuit law for calculating the voltage and current in 

electric circuits. After this paper was published, many researchers from different science fields 

started looking towards this theory and started making many interesting applications.  

Network theory is a part of graph theory wherein the relation between discrete objects is 

presented. This theory plays an important role in a wide variety of disciplines ranging from 

computer science, engineering, sociology to molecular and population biology (6). The PPI 

network holds information about the behavior of different proteins in coordination with others to 

enable the biological processes within the cell. This is done by examining each and every amino 

acid individually and understanding the connection (7). Various parameters and their interactions 

are analyzed and a graph is created where thousands of nodes are connected via edges.  

 

 

 

 

Node 

Edge 
Fig 1.1: Representation of Edge and Node 
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1.1. Type of graphs:  

Definitions in graph vary. Here are some basic ways to define a graph and the related 

mathematics related to it.  

1.1.1 Undirected graph:  

In this type of graph, we consider a pair (N, E), where N is the nodes while E is the 

edges representing the connection. For a single connection between node i and j, we can 

represent it as E = {(i, j)| i, j ∈ N}. For this case, we can say that i and j are neighbors. For 

network construction, a multi-edge connection is required where two or more edges have 

the same endpoint.  

 

1.1.2 Directed graph:  

A directed graph consists of triple components (N, E, f) where f is the function that 

maps each element of E to an ordered pair of the node in N. Ordered pair of nodes are 

called directed edges. An edge E = (i, j) is having direction from i to j. Such type of graphs 

is used to describe biological pathways or procedures which show sequential interactions, 

such as metabolic signal transduction or even regulatory network.  

Type of directed graph:  

1.1.2.1 Weighted graph:  

A weighted graph is defined as a graph G= (N, E) where N is a set of nodes and E 

is set of edges between the nodes E= {(u, n) | u, n ∈ V} associated with a weight function 

of value w: E→R, where R denotes set of real numbers. The weight wi,j of the edge between 

i and j represent the connection. Usually, larger weights represent the high reliability of a 

connection. 

 

1.1.2.2 Unweighted graph: 

An unweighted graph is defined as graph G= (N, E) where N is a set of nodes and 

E is a set of edges between the vertices E. There is no weight function associated with it 

and hence, the network generated is usually based on the edge E= {(u, n) | u, n ∈ V}. The 

graph generated using this method considers every edge as important.   
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These graphs can be used to model many types of relations in biology, where the node 

represent amino-acid while the edge makes up for the connections between the different amino 

acids (8, 9). The protein-protein interaction (PPI) networks are usually represented using the same 

method, which may be weighted or unweighted graph, depending on the users need. The network 

in which edges are defined as amino acid residues and their interaction which is based on different 

topological parameters has gained tremendous popularity with new studies suggesting new insight 

into protein structure-function relation. Graph generated using such definitions are termed as an 

amino acid network (AAN) or residue interaction network (RIN) (10). Recently, there is a tendency 

to integrate AAN features and other structural features in order to predict various properties by 

using machine learning methods (11).  

AAN can be constructed by using the weighted or unweighted node or edges (12). In node-

weighted AANs, the nodes are assigned by various weights to check the interaction in the model. 

A B 

C D 

Fig 1.2: Type of graph (A) Undirected, (B) Directed, (C) Weighted, (D) Unweighted  
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Similarly, in edge-weighted AANs, the edges are assigned weights to model the interaction 

strength between residues. These weights can be assigned by a number of possible methods such 

as atom-atom links (13), dynamic simulations (14), energy functions (15), and so on.  

Most of the AAN models mostly emphasize topological properties and ignore the 

importance of heterogeneity of amino acid residues. Such models treat all the nodes as same in the 

network, hence data can be incorrect using such models (16, 17). While in the case of node 

weighted, the amino acids are not considered that important and only the number of nodes to a 

certain edge is considered as important. While the nodes which are weighted differently usually 

reflect specific features of the diverse amino acids and that improves the complex representation 

of AANs (18).   

The volume of data on PPI’s is rapidly increasing due to the improvements in high 

throughput techniques such as yeast-2-hybrid screening or mass spectrometry (19). Data is been 

constantly added and it becomes essential to study and understand the correlation between the 

produced data. Hence, graph theory plays an important role to help correlate the data and make a 

meaningful conclusion from it. Analysis of the topological parameters of proteins with structures 

is of great value and is an active field of research. Due to the use of X-ray crystallography, many 

protein structures are being solved and hence, the need of automated methods for analysis are 

required due to which the tools from graph theory are being explored for such analysis.  

Protein-protein complexes can be classified into various types such as dimeric-multimeric 

complexes, homodimer-heterodimer complexes and even on the biological significance of the 

complex. The binding affinity of the protein-protein complexes can be used as one such parameter 

which can be related to most of the functional aspects of the proteins. The data regarding 

interacting pairs of proteins have been deposited in databases such as STRING (20), BioGRID 

(21), DIP (22). 

While generating a RIN, there are several methods which can be used to construct this 

network such as CyToStructure (23), RINalyzer (24), which are plugins for Cytoscape (25) which 

can be integrated with other features of Cytoscape for analyzing the protein structure. In the case 

of PyMOL, plugins such as xPyder (26) and PyInteraph (27) are used which include various 

features for extensive molecular analysis. The major limitation of these tools is that they usually 

depend on other software and need a specific system requirement. 
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 Hence, sometimes the user needs to download various dependencies in order to run one 

program. In this study, we compare two such tools, one which generates a graph based on a node 

while other generates the graph based on the edge. NACEN (28) is an R based package which 

needs dependencies to run while the other tool NAPS (29) is an online web server which generates 

the graph instantly and needs no dependencies.   
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Chapter 2: Genesis of hypothesis 
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There are few tools available which analyze the protein structures on a network basis. 

There are two ways in which a network can be constructed, node based or edge based.  Thus, the 

residue interaction network (RIN) generated varies based on the feature the user has used and 

what parameters one selects. It is difficult to predict which feature will predict the hot patch and 

thus, we tried to use both the tools and compared them to understand which one gives a better 

result, node generated graph or edge generated graph. As per our knowledge, there are no studies 

which compare these two types of graphs and hence, we had to construct a workflow to find out 

which method of generating the graph will be better for protein complexes of the dataset. Since 

the graph can be weighted or non-weighted, the features increase and hence, it becomes difficult 

to select the total number of features which are actually contributing and which are reducing the 

performance. We selected some features which might play a crucial role in differentiating the 

complexes. We also used a machine learning tool in order to differentiate between high and low 

binding affinity complexes from the dataset.        

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3: Materials and Methods 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

19 

 

3.1 Generating the graph:  

Previous studies have also suggested that topological parameters play an important role in 

determining crucial residues for protein stability (30), protein dynamics (31), carrying out the 

enzymatic activity (32) and also understanding protein folding kinetics. There are online websites 

and standalone tools available in order to visualize and analyze the protein contact maps.  

3.1.1 Network-based analysis of protein structure (NAPS):  

NAPS (29) is an online tool for network generation which provides features for analysis 

and interactive visualization of the network. The first step is to provide the protein structure 

information which can be done by uploading a PDB file from the local machine or by simply 

entering the four-letter PDB code (where the PDB file is fetched from the PDB mirror from 

backend). NAPS offer five methods to generate the network which is as follows:  

3.1.1.1 Network Construction:  

Following methods can be used in order to generate a network. 

 

3.1.1.1.1 Cα network: 

A Cα atom of an amino acid residue is considered as a node and an edge is constructed if 

the distance between Cα-Cα is in between user-defined threshold (Default upper threshold = 7 A˚, 

lower threshold= 0 A˚). This method is widely used for generating the network that provides a 

good 3D topology of the protein structure. 

 

3.1.1.1.2 Cβ network: 

The side chain Cβ atom of amino acid is considered as a node with an edge constructed if 

Cβ-Cβ distance (Cα in case of Gly) between two residues is in between user-defined threshold 

(Default upper threshold = 7 A˚, lower threshold= 0 A˚). It is useful for understanding the 3D 

topology of the protein fold through side-chain interactions.  

3.1.1.1.3 Any pair contact network: 

The geometric center of the amino acid is considered as a node and an edge is constructed 

if the distance between any two atoms of the residue is in between user-defined threshold (Default 

upper threshold = 5 A˚, lower threshold= 0 A˚). This network provides analysis at the atomic level.  
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3.1.1.1.4 Centroid network:  

The center of mass of an amino acid residue is used as a node and an edge is constructed if the 

distance between the centroids of the two residues is in between user-defined threshold    (Default 

upper threshold = 8.5 A˚, lower threshold= 0 A˚). 

 

3.1.1.1.5 Interaction strength network: 

The geometric center of the side chain of amino acid residue is used as a node and an edge 

is constructed if the interaction strength between two residues, is given by,  

Iij = [
𝑛𝑖𝑗

√𝑁𝑖 ∗ 𝑁𝑗
] 𝑋100 

 is ≥ Ic, threshold interaction strength (4%). 

Where nij is the number of side chain atom pairs of residue i and j within 4.5 Ao, Ni and Nj are the 

normalization factor (33).  

While generating the graph using the weighted method, the following formula is used: 

     𝑊𝑖𝑗 =  
1

𝑑𝑖𝑗
  

Where dij is the Euclidean distance between atoms for the respective parameter of ith and jth residue. 

While in case of interaction strength, the weigh is given as Wij = Iij. 

 

3.1.1.2 Centrality analysis:  

 This feature plays a most important role since it identified the most central or most important 

or the most significant node in a network. Centrality measure of node provides a quantification of 

the topological importance of the node in the network (34). Different centrality measures have 

been proposed for ranking the nodes in a complex network and quantify their importance. NAPS 

provides a total of seven node based centrality measures which are shown in table 3.I.  
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Name Description Definition 

Degree Number of edges directly incident to the node. 
𝐶𝑑(𝑢) =  ∑ Auv

 

v∈V

 

A is the adjacency matrix, V is the set of all 

nodes and u, v are the nodes 

Closeness The average length of the shortest path between 

the node and all other nodes in the graph 
𝐶𝑐𝑙(𝑢) =  

(𝑛 − 1)

∑ 𝑑𝑖𝑠𝑡(𝑢, 𝑣)v∈V
 

d(u, v): shortest path distance between nodes 

u and v, n: number of nodes in the network. 

Betweenness Number of times a node acts as a bridge along the 

shortest path between two different nodes 

𝐶𝑏(𝑢) =  ∑  

𝑠≠𝑢∈𝑉

∑ 𝜎𝑠𝑡 (𝑢)/𝜎𝑠𝑡

𝑡≠𝑢∈𝑉

 

𝜎st: shortest path between s and t, 

𝜎st(u): shortest path between s and t passing 

through u 

Clustering 

Coefficient 

The ratio of connected neighbors of a node to the 

total number of connections possible between the 

neighbors. 

𝐶𝑐𝑐(𝑢) =  
𝜆(𝑢)

𝜏(𝑢)
 

τ(u) = Cd(u)(Cd(u)-1)/2, while λ(u) is 

neighbors of u connected by an edge 

Eigenvector It assigns a relative score to all nodes in the 

network based on the concept that connections 

more to the score of the node. 

𝑋𝑖 =  
1

𝜆
 ∑ 𝐴𝑖𝑗 𝑋𝑗

𝑁

𝑗=1

 

Aij is the ijth element of the adjacency matrix, 

Λ: largest eigenvalue of A, 

Xi: eigenvector centrality of node i 

Eccentricity The shortest path distance of the node to the 

farthest node in the network. 

𝐶𝑒(𝑢) = max (𝑑𝑖𝑠𝑡(𝑢, 𝑣)) 

N(u) is the neighbors of u. 

Strength The weighted degree which is represented by 

cumulative weights of all the edges connected to 

a node. 

𝐶𝑠(𝑢) =  ∑ 𝑊𝑢𝑣

𝑣∈𝑁(𝑢)

 

Wuv: weight of the edge joining u and v 

Table 3.I: NAPS features 

Once the edge-weighted graph is constructed, using the topological parameters as features, we can 

do various calculations in order to generate new features.   
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3.1.2 Node-weighted amino acid contact energy network (NACEN):  

This is a standalone tool based on the package in R. NACENs are constructed based on amino 

acid contact energy network (AACEN) (35). It is a node-weighted amino acid network and has six 

different properties for the residue. The user can give the input in two ways, PDB file located on 

the local machine or by entering the four-digit PDB code which then connects the DSSP (36) server 

and then downloads the file in order to plot the graph. DSSP is an online database of secondary 

structure assignments for all the protein entries in Protein Data Bank (PDB).  It also has pre-

calculated feature files which help in generating the graph much faster.  

3.1.2.1 Network Construction:  

The network is created using six different features which belong to four types as node 

weights in the AAN.   

3.1.2.1.1 Solvent accessibility:  

 Relative solvent accessibility is calculated using the Dictionary of protein secondary 

structure (DSSP) database and then normalized by the side chain surface area. This feature is 

important for studying and understanding the functional residues in the complex.  

3.1.2.1.2 Functional residues:  

 Features from Amino acid index database are used, functional residues such as catalytic 

residues can be classified as hydrophobic or polar residues based on their physiochemical 

properties. In this feature, mass, hydrophobicity, and polarity of residues are obtained from the 

database (37).  

3.1.2.1.3 Flexibility: 

The flexibility of backbone residues is calculated by DynaMine (38). It quantifies the 

backbone flexibility on the amino-acid level. A value of 1 indicated rigid conformation of the 

residue, while a value of zero indicates a highly flexible residue.  

3.1.2.1.4 Jensen-Shannon Divergence (JSD) score:  

The conservation score of JSD is been used to estimate sequence conservation (39). The residues 

in alignment with more than 30% gaps are ignored when calculating the JSD score. 
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 There are a total of six features of residues as node weight types, namely solvent accessibility (s), 

mass (m), hydrophobicity (h), polarity (p), flexibility (f) and JSD conservation score (j), which are 

used to predict the functional residues (FRs) (40, 41). Depending on the user choice of node 

weight, a network is generated. The node weights of residue i is defined as  

    Wi = 1- si, mi, hi, pi, fi or ji   

 The normalized score is used to generate the network.  

3.1.2.2 Topological parameters:  

There is a total of four parameters to reveal both the physiochemical properties and 

topological characters for node i in the network, which includes node weighted degree Kwi, 

betweenness Bwi, closeness centrality Cwi as given in table 3.II.  

Name Description AACEN NACEN 

Degree Total number of edges directly 

incident to the node 
Ki =  ∑ AMij

n

j≠i

 

AMij: Two nodes connected by edges 

Kwi = wiKi 

Closeness The average length of the 

shortest path between the node 

and all other nodes in the graph. 

Hence, the more central the node 

is, the closer it is to all other 

nodes. 

Ci =  
1

∑ dijn
j≠i

 

dij: Distance from node i and j 

Ci = wiCi 

Betweenness Number of times a node acts as a 

bridge along the shortest path 

between two different nodes. 

𝐵𝑖 =  ∑ ∂(i)jv/ ∂jv

𝑛

𝑣≠𝑖≠𝑗

 

∂(i)jv: Number of shortest paths between node j 

and v passing through i, 

∂jv: Number of shortest paths from node j to v. 

Bwi = wiBi. 

Table 3.II: NACEN features 

After constructing the network, the next thing is predicting the interface residues which can be 

done by using tools.  
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The total number of features available for NAPS are five network type (Cα, Cβ, atom pair contact, 

centroid, and interaction strength) and seven topological parameters (degree, closeness, 

betweenness, clustering coefficient, eigenvector, eccentricity, strength) which gives a feature set 

of 35, for weighted or non-weighted. While in case of NACEN, there are of six network type 

(solvent accessibility, mass, hydrophobicity, polarity, flexibility, and JSD conservation score) and 

three topological parameters (degree, closeness, betweenness), hence a total of 18 parameters, for 

weighted or non-weighted.  

 

3.1.3 Interface residues:  

 Once the network is constructed, we need to determine places where the actual protein-

protein interaction occurs. Tools for determining such interactions are very scarce. The current 

tools such as NACCESS (42), DSSP (43), DPX server, CX server can process only one molecular 

structure at a time and the user needs to run the program manually each and every time in order to 

get the result. In addition to this, it is important to generate the data in a user-friendly manner and 

which can be easily edited.   

 Protein Structure and Interaction Analyzer (PSAIA) (44) is one such tool which can process 

each chain within the given molecular structure file separately (while ignoring other chains). It is 

easy to use and generates output which can be easily processed for other purposes. PSAIA consists 

of two separate tools PSA (Protein Structure Analyzer) and PIA (Protein Interaction Analyzer). 

User needs to upload PDB file in order to determine the interaction, while the output is generated 

in the text (table) and XML format. Here we’ve used Interaction analyzer only and we’ll be 

mentioning about this only. 

1.3.1 Interaction Algorithm:  

 These are the following algorithms used in PSAIA:  

1.3.1.1 Atom Nucleus Distance:  

 In this method, two residues from opposite chains are defined as interacting if there is at 

least one pair of the non-hydrogen atom, one from each residue, at a distance below the user 

specified threshold (Threshold value between 4.5 – 6 Ao) (45).  



 

25 

 

1.3.1.2 Atom Van der Walls Radii Distance:  

   Two residues from opposite chains are marked as interacting if there is at least one pair of 

non-hydrogen atoms, one from each residue, at a distance smaller than the sum of their van der 

Waals radii plus a user-defined threshold (Threshold value between 0.5 – 1.5 Ao) (46). 

1.3.1.3 Accessible Surface Area (ASA) change:  

 The accessible surface area is the atomic surface area of a molecule that is accessible to 

solvent and is usually represented as Ao2 (square Angstroms) (47). ASA is calculated using ‘rolling 

ball’ algorithm (48), which uses a sphere (representing a solvent molecule) of a user-defined radius 

and ‘probes’ the surface of the molecule (usual value 1.4 Ao).   

 ASA change is calculated by calculating ASA for a particular residue before and after the 

process of complexation. If the difference between ASA in bound and unbound form is above the 

user-defined threshold, then a residue is defined as an interacting residue.  

Radii file consists of Van der Waals Radii for each atom of particular residue and 

nucleotide, ligand atoms and heteroatoms which is included in the installation package. Linking 

of the file with software can be done easily and then calculations can be carried out.   

 In output options, contact shows the residues which in contact, binding residues give a list 

of residues which are in contact with an amino acid of another chain while residue binding status 

shows a list of each and every residue irrespective of their binding status.  

3.1.4 Machine learning:  

The term machine learning was first coined by Arthur Samuel in the year 1959 who is a 

pioneer in the field of computer gaming and artificial intelligence (AI) (49). Initially, AI and ML 

were considered the same thing since both used the same type of approach to solve problems. A 

few years later, there was a need to use logic and knowledge-based approach (50). This created a 

rift between AI and ML, by 1980’s AI became dominant since work was carried out in knowledge-

based learning while ML flourished in the 1990s when it started using models based on statistics 

and probability theory (51). It started tackling problems of particular nature and started gathering 

data, which leads to us to today ML algorithms which are state-of-art techniques.  
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3.1.4.1 Learning methods: 

Once the data is been provided, ML uses the data to train itself, forms a model and then it 

generates the output.  

Supervised learning: In this method, examples having a predefined-solution are given as input and 

then test data is presented to it. During the process, it learns certain rules which can map the input 

and output data (52). 

Unsupervised learning: The algorithm builds a mathematical model from the input data which 

contains only the input and no desired output labels. This method can discover patterns in the data 

and can group the input into categories as in feature-based learning.  

Semi-supervised learning: The algorithm develops mathematical models from incomplete data 

where a portion of input data doesn’t have a label.  

Reinforcement learning: In this type of learning, data is provided as feedback to the algorithm. 

During the training, the environment can go into a new state which can be positive or negative for 

the model depending on the feedback, and by learning from these feedbacks, the model trains 

itself. In this way, the algorithm not only learns to get short time rewards but also gets better in 

less amount of time. This kind of algorithms is used in autonomous vehicles or in learning to play 

a game against a human opponent (53).   

 

 

 

 

 

 

  

Fig 2.1: Learning methods used by ML. 
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Random forest: It is an ensemble learning method which operates by constructing a multitude of 

decision tree at training time and generates the output which is generally mean of all the individual 

trees. This method helps in correcting the overfitting of data which may occur in the decision tree 

(54).  

 

  

 

 

 

 

Fig 2.2 Decision tree and random forest.  

3.1.4.2 Cross-Validation:  

 Cross-validation is a technique used to evaluate ML models by training several ML models 

on the subset of available input data and to evaluate them based on the complementary data. It is 

used to detect overfitting of the data. There are many cross-validation techniques such as k-fold-

cross-validation, leave one out cross validation (LOOCV), holdout method and bootstrap method. 

In this study, we’ve used LOOCV to evaluate our model.  

 In LOOCV, the training is performed on the whole dataset but by leaving only one data 

point, which is used as test data and then iterate for each data point. Since each and every data 

point is been used, there is low bias (55).  

3.1.5 Dataset 

 We have compiled a dataset of 101 protein-protein complexes for this study from the earlier 

reported dataset (56). The dataset contains multimeric complexes, in order to reduce the 

complexity, we selected only dimeric complexes. We also removed the missing residues, 

heterogenous atoms from the complexes so that we can concentrate specifically on interchain and 

intrachain residues only. The dataset includes protein-protein complexes with diverse functions 

(antigen-antibody, enzyme-inhibitor, enzyme-substrate, other G-protein, etc.).  
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These complexes were classified into two groups based on their binding affinity. The complexes 

with Kd value < 10-8 M were considered as a high-affinity class while Kd > 10-8 M were considered 

as a low-affinity class. The Kd range for the high-affinity class is generally considered as 

permanent protein-protein complex. Using this criterion, we obtained a balanced dataset which 

includes, 50 high affinities and 51 low-affinity class. For preliminary studies, we used a total of 8 

complexes, the Protein Data Bank (PDB) code for these eight complexes is given in Table 3.III. 

While the description for all the complexes is provided in supporting information Table S1.    

High binding affinity Low binding affinity 

1AVX 1BUH 

1AY7 1E96 

AM10 1KAC 

2B42 1ZHI 

 

Table 3.III: List of PDB code for preliminary studies.  

3.1.6 Calculation: 

 Once the graph is generated using the topological parameters, we used the text file in case 

of NAPS and CSV file in case of NACEN and calculated the Z-Score for the file programmatically. 

Here we used python 3.6 while the text editor we used was sublime text 3. Latest python libraries 

were used (pandas (v: 0.23.4), numpy (v: 1.16.2), scipy (v: 1.1.0)).  

    Z − Score =  
X− µ

ϭ
 

In this equation, X is the actual value, µ is the mean and ϭ is the standard deviation.  

Once the calculations were made, the output was a CSV file which contained the values of 

the parameter as well as the Z-score values in separate columns, so that user can use whichever 

value seems beneficial. During the same process, we added the PSAIA data in the new column so 

that we can know which residues are interacting.  
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3.1.7 Assessment of the performance:  

 As mentioned earlier, we used leave one out cross-validation (LOOCV) method to evaluate 

the performance of the model. The prediction performance is assessed using the following 

measures:  

 

    Sensitivity =
TP

TP+FN 
    

 

    Specificity =  
TN

TN+FP
   

 

    Precision =  
TP

TP+FP
 

    

    F − measure =  
2 ( Sensitivity x  Precision) 

Sensitivity+Precision 
 

 

In the above equations, TP, TN, FP, FN represent, true positive, true negative, false positive, false 

negative respectively.   
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Chapter 4: Results and Discussion   
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4.1 Feature selection:  

We tried various combination of features from NAPS and NACEN to obtain the best feature 

for discriminating the protein-protein complexes with high and low affinity. We selected 4 protein-

protein complexes at random which are shown in table 3 and analyzed each and every parameter 

possible for these complexes. Parameters such as the seven topological parameters and their 

weighted and non-weighted feature. To reduce the complexity, we used only interacting residues 

which we obtained by using PSAIA. We found that the weighted graph gives a much better graph 

as compared to the non-weighted graph.     

In the next step, we tried optimizing the threshold value for the maximum distance contact 

criterion in PSAIA. We selected different threshold values ranging from 4-9 Ao since in most of 

the studies these values have been used. Hence, we plotted a graph for all the range and found that 

7 Ao gives the best result since most of the interface residues were visible in that range. We also 

made a comparison between different topological parameter to understand which parameter is 

showing more importance to differentiate between high and low binding affinity complexes. 

 For NAPS, which has a feature set of 32, we calculated the Z-score for each and every 

complex. In order to simplify the data, we selected the data in a way such that Z-score values above 

2, 1.5 and 1 were only selected since most the hot patches or hotspots must occur in the top values 

only. The total number of values in the selected data was calculated and then divided by the total 

number of interface residues, to get the normalized number. We then divided value greater than 2 

with values greater than 1. Since there was a pattern recognized in this method, we carried out the 

same procedure with the remaining parameters. Similarly, for NACEN, for a feature set of 18, we 

calculated the Z-score and then the same procedure was followed.  

In order to find the effect of these topological parameters on the amino acid level, we selected 

amino acids for the same values, greater than 2, 1.5 and 1 and carried out a similar procedure. We 

found that aromatic and positively charged residues at the binding sites are identified as an 

important parameter for discriminating protein-protein complexes based on binding affinities. This 

observation was similar to previously reported data (57, 58). This finding specifically emphasizes 

the importance of aromatic and positively charged residues in the binding site.  
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Fig 4.1: Comparison between aromatic and positively charged residues for high and low 

binding affinity complexes.  

We selected this feature to differentiate between high and low binding affinity complexes. 

After seeing a trend in this feature, we considered taking only the interface residues and dividing 

it with the whole length of the complex. This will not only give us the exact number of interface 

residues but it’ll also help us to build us a new feature. We tried finding a correlation between 

the various features but we couldn’t find any direct correlation. Every-time we across a graph 

where the high binding and low binding affinity complexes were showing similar importance it 

became clear that each and every feature has its own importance and no single feature or 

combination of feature can be used to differentiate between the binding affinity of the 

complexes.   

4.2 Analysis of selected features: 

We started using machine learning to train out data and simultaneously checked its 

performance using the cross-validation LOOCV method. Here we saw the feature importance, 

which feature is playing a crucial role in differentiating the complexes and also calculated the 

true positive (TP), true negative (TN), false negative (FN), false positive (FP) values for the data 

so that we can determine the performance of the data. We tried using different features in order 

to increase the overall performance of the model. Performance for the features is given in table 3.  
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Table 4.I: Comparison between different features of NAPS and their analysis.  

On comparing different features, we can see that by adding some features such as 

interface residues to amino acids, the performance is increasing and the machine can differentiate 

between the data much more effectively as compared to only amino acids. When we add the 

topological parameters, the performance decreases since randomness in the data increases and 

hence, the overall performance decreases.  

 The feature importance parameter showed that two features played an important role in 

differentiation, strength, and ANN. When we tried adding both the parameters, the performance 

almost remains the same which clearly indicates that differentiation cannot be made simply by 

taking into consideration one or two features. On selecting only the topological parameters 

feature, it can be seen that the result is better and it can be said that adding additional features 

such as amino acids and interface residues don’t make much of difference for our dataset.  

We carried out the same exercise using the NACEN generated topological parameters. 

The interface residue feature will remain the same since the complexes are the same while the 

amino acid feature will change since the process of generating graph is different. 

 

Features TP FN FP TN Sensitivity Precision Specificity F- measure 

Amino acid 35 15 20 31 70 63.6 60.8 66.7 

Interface residue 29 21 20 31 58 59.2 60.8 58.6 

Amino acid + Interface residue 37 13 15 36 74 71.2 70.6 72.5 

Topology parameters + Amino acid + 

interface 

35 15 12 39 70 74.5 76.5 72.2 

Strength + Amino acid + Interface 

residue 

32 18 13 38 64 71.1 74.5 67.4 

ANN + Strength + Amino acid + 

Interface residue 

33 17 13 38 66 71.7 74.5 68.8 

ANN + Amino acid + Interface 

residue 

34 16 15 36 68 69.4 70.6 68.7 

Topological parameters 35 15 18 33 70 66.0 64.7 68.0 
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Table 4.II: Comparison between different features of NACEN and their analysis  

In this method, there is a substantial increase in the performance as it can be seen from 

the F-measure. Amino acids did not play a substantial role in differentiation but the topological 

parameters generated during the construction of graph plays an important role in differentiating 

high binding and low binding affinity complexes. Interface residues when added to the amino 

acid feature tends to increase the overall performance but the most crucial role is played by the 

topological parameters. We did not consider any other individual feature from the topological 

parameters since each and every parameter played an equally important role. It is important to 

note that the performance of amino acid and interface has increased after the addition of 

topological parameters but the overall performance of topological parameters is higher by a little 

margin. Hence, calculating only topological parameters is sufficient and there is no need to 

consider other features for our dataset.  

 

 

 

 

 

 

 

 

 

 

 

Features TP FN FP TN Sensitivity Precision Specificity F-measure 

Amino acid 31 19 14 37 62 68.9 72.5 65.3 

Amino acid + Interface residue 36 14 9 42 72 80.0 82.4 75.8 

Topology parameters + Amino acid + 

interface 

36 14 7 44 72 83.7 86.3 77.4 

Topological parameters  37 13 7 44 74 84.1 86.3 78.7 
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Chapter 5:   

Conclusion and future perspective  
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We used two different methods of generating the network and used topological 

parameters for comparison. We also used amino acids feature in order to understand whether a 

trend exists or not and on comparison and found that it does play a role in differentiating the two 

binding affinity complexes. We also used a unique feature by just comparing the interface 

residues from the whole chain and found that the total number of interfaces in high binding 

affinity complexes is more as compared to low binding affinity complexes. Hence, this feature 

was also used for comparison. Later we used a machine learning tool in order to generate feature 

importance and finally understanding which features from the graph can be used to make the 

differentiation.  

From this study, we concluded that for our dataset, NACEN generated graph (edge) is a 

better option as compared to NAPS (node). We also tried new features which showed 

improvement in the overall performance and hence, these features can be used in further studies.     

Future trends:  

After analysis of the topological parameters, we selected the five residues and located 

them on the structure. We saw that these residues formed a cluster and the rend was seen in 

mostly each and every complex. The NAPS showed cluster formation whereas NACEN did not 

show any such trend. Were curious to understand why these residues form a cluster and do they 

indicate a hotspot patch. 

 

 

 

 

 

 

 

 

Fig 5.1: Clustered residues generated using NAPS topological parameters. (PDB: 1ATN_AD) 
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We would also like to check the mobility of each and every complex since the hotspots 

are known to be rigid and hence are less mobile while residues of intrachain are more mobile. 

This can give us an insight where are the above-mentioned residues placed and are they near the 

hotspot. In addition to this, we are also planning to have a look at the uniport entries of the 

complexes and check if there are any reports about the mutation at the specific amino acid and 

what is the effect due to this on the entire structure. So that we can prove that the specific residue 

in a certain complex plays an important role. 
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Complex (High binding affinity) Category  Complex (High binding affinity) Category 

1ATN_AD OX  1TEC_EI EI 

1AVW_AB EI  1TPA_EI EI 

1AVX_AB EI  1UUG_AB EI 

1AY7_AB EI  1YVB_AI EI 

1BKD_RS OG  1ZLI_AB EI 

1BRS_AD OX  2B42_AB EI 

1BVN_PT EI  2GOX_AB EI 

1CGI_EI EI  2HRK_AB OX 

1CSE_EI EI  2I25_NL AB 

1DFJ_EI EI  2J0T_AD EI 

1EAW_AB EI  2O3B_AB EI 

1EMV_AB OX  2OUL_AB EI 

1FLE_EI EI  2PTC_EI EI 

1FSS_AB OX  2SEC_EI EI 

1GPW_AB OX  2SIC_EI EI 

1GXD_AC EI  2SNI_EI EI 

1JIW_PI EI  2UUY_AB EI 

1JTG_AB EI  2VDB_AB OX 

1KXP_AD OX  3SGB_EI OX 

1M10_AB ER  4SGB_EI EI 

1MAH_AF EI  4TPI_ZI EI 

1OC0_AB EI  7CEI_AB EI 

1OPH_AB EI  ER: Complexes with regulatory chain  

1PXV_AC EI  EI: Enzyme-Inhibitor  

1R0R_EI EI  ES: Enzyme-Substrate  

1RRP_AB OX  A: Antigen-Antibody  

1STF_EI EI  AB: Antigen-Bound Antibody  

1T6B_XY OR  OG: Other G-Protein  

   OX: Other Miscellaneous  
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Complex (Low binding affinity) Category  Complex (Low binding affinity) Category 

1A0O_AB OX  1SBB_AB OR 

1AK4_AD OX  1TMQ_AB EI 

1B6C_AB OX  1US7_AB ER 

1BUH_AB EI  1WQ1_RG OG 

1E6E_AB ES  1XD3_AB OX 

1E96_AB OG  1XQS_AC OX 

1EWY_AC ES  1YCS_AB OX 

1F6M_AC ES  1Z0K_AB OG 

1FC2_CD OX  1ZM4_AB ES 

1FFW_AB OX  2A9K_AB ES 

1FQJ_AB OG  2AJF_AE OR 

1GCQ_BC OX  2AQ3_AB OX 

1GHQ_AB OR  2BF_AP OX 

1GLA_FG ER  2C0I_AB OX 

1GRN_AB OG  2FJU_AB OG 

1GUA_AB OX  2HLE_AB OR 

1H1V_AG OX  2OOB_AB ES 

1HE1_AC OX  2PCB_AB OX 

1HE8_AB OG  2PCC_AB ES 

1KAC_AB OR  2TGP_ZI EI 

1KTZ_AB OR  2WPT_AB OX 

1LFD_AB OG  3BZD_AB OX 

1MEL_BM A  3CPH_GA OG 

1MQ8_AB OX  EI: Enzyme-Inhibitor  

1PVH_AB OR  ES: Enzyme-Substrate  

1QA9_AB OX  A: Antigen-Antibody   

1R8S_AE OG  ER: Complexes regulatory chain   

1S1Q_AB OX  OG: Other G-Protein  

   OX: Other Miscellaneous  

 



 

47 

 

System requirements and installation  

1) NACEN:  

Requirements:  

The main requirement is to have a working installation of R >= 3.2.0. It also requires 

dependencies such as bio3d and igraph. DSSP 3.0 is also required which is included in 

the installation package or can be downloaded separately. The installation method is 

given in the supporting information.  

2) NAPS:  

The main advantage over here is that no additional plugins are required. The network 

visualization is performed by WebGL which is preinstalled in al modern browsers.  

Firefox Mozilla: Version 4.0 and above. 

Google Chrome: Version 9.0 and above. 

Safari: Version 6.0 and newer versions on OS X Mountain Lion, Mac OS X Lion and 

Safari 5.1 on Mac OS X Snow Leopard 

3) PSAIA 

The software can be downloaded from the link and requires no additional plugins.  

  

Examples  

1) One can follow the steps given for both tools to generate a graph. Following is the 

network generated from the tools. Here we're using 1ATN as an example.  

 

Table SII: NAPS generated graph:  

 

 

 

 

 

 

Fig S1: NAPS generated network.  

Node Degree Cluster_

coeff 

Closeness Betweenness Eigenvecto

r centrality 

Eccentricity Average 

neighbor 

degree 

Strength 

A1 6 1.000000 4.550683 0.000076 0.000054 10 12.38645 251.0000 

A2 9 0.833333 4.584678 0.000000 0.000062 10 12.30909 220.0000 

A3 17 0.477941 4.966116 0.001884 0.000151 10 14.52124 353.0000 

A4 12 0.636364 4.716793 0.000457 0.000078 9 13.49342 304.0000 

A5 13 0.628205 4.898657 0.001432 0.000112 9 14.75919 299.0000 
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Table S III: NACEN generated graph:  
 

ID chain Resid Res K B C Kw Bw Cw 

A:1:ASP A:1:ASP A 1 ASP 1 0 0.000105 0 0 0.100088 

A:2:GLU A:2:GLU A 2 GLU 2 627 0.000112 0.033974 0.004533 0.107823 

A:3:ASP A:3:ASP A 3 ASP 2 1252 0.00012 0.033409 0.008901 0.14077 

A:4:GLU A:4:GLU A 4 GLU 2 1875 0.00013 0.053668 0.021415 0.29079 

A:5:THR A:5:THR A 5 THR 2 2496 0.000141 0.042913 0.022795 0.293112 

 

We also obtain the predicted protein-protein interaction from PSAIA.  

 

2) Once all the data is obtained, we use a python program to convert the graph values 

into Z-score and also concatenate the PSAIA result in the same CSV file. During this 

step, we consider only the interface residues.  

 

 

 

 

 

 

 

 

 

 

 

Fig SII: NACEN generated network  

 

 

Chain Residue no. Residue Contact Output type 

A 1 ASP 0 MaximunDistance 

A 2 GLU 0 MaximunDistance 

A 3 ASP 0 MaximunDistance 

A 4 GLU 0 MaximunDistance 

A 5 THR 0 MaximunDistance 
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Degree Cluster_coeff Closeness Betweenness Eigenvector 

centrality 

Eccentricity Average 

neighbor 

degree 

Strength 

61 21 0.447619 7.813632 0.102099 0.013915 7 20.11033 571 

414 19 0.497076 7.698478 0.168419 0.020464 7 20.44935 543 

415 24 0.427536 7.580601 0.095816 0.030927 8 21.502 500 

60 22 0.458874 7.570512 0.112171 0.017244 8 21.58058 515 

58 20 0.484211 7.526447 0.034895 0.007657 7 19.71678 459 

 

Degree_ 

zscore 

Cluster_coeff_ 

zscore 

Closeness_ 

zscore 

Betweenness_ 

zscore 

Eigenvector 

centrality_ 

zscore 

Eccentricity_ 

zscore 

Average 

neighbor 

degree_ 

zscore 

Strength_ 

zscore 

0.459561 -0.64015 2.872291 3.967458 -0.25 -1.96144 0.208009 1.06037 

0.08293 -0.21414 2.719437 6.88946 -0.05228 -1.96144 0.324221 0.867438 

1.024506 -0.81314 2.562968 3.690634 0.263595 -1.16701 0.685053 0.57115 

0.647876 -0.5432 2.549576 4.411221 -0.1495 -1.16701 0.711991 0.674506 

0.271246 -0.32496 2.491084 1.006506 -0.43893 -1.96144 0.073103 0.288642 

 

Chain Residue 

No. 

Residue Interaction 

A 62 ARG 1 

D 44 HIS 1 

D 45 LEU 1 

A 61 LYS 1 

A 59 GLN 1 

 

Select the feature set and train the data to calculate feature importance (calculation done on 

multiple files).  

[0.03056898, 0.01111046, 0.16024753, 0.01566347, 0.02120994, 0.02303171, 0.02493199, 

0.00765866] 

4) We can also calculate TP, FP, FN, TN and calculate the performance of the model as 

discussed earlier.  

  

 

 


